
An international collaboration between researchers at the University of Copenhagen, Nagoya University and the University of Western Australia has resulted in a breakthrough in plant biology. Since 2014, the researchers have worked on identifying the genetic background for the improved flood tolerance observed in rice, wheat and several natural wetland plants. In a New Phytologist, article, the researchers describe the discovery of a single gene that controls the surface properties of rice, rendering the leaves superhydrophobic.
>> Read the Full Article

In a laboratory at the University of Rochester, researchers are using lasers to change the surface of metals in incredible ways, such as making them super water-repellent without the use of special coatings, paints, or solvents.
>> Read the Full Article

Researchers monitoring San Francisco Bay for algal toxins have found a surprising array of different toxins in the water and in mussels collected from the bay. Four different classes of toxins, including one produced in freshwater environments, occur regularly throughout the bay, according to a study led by UC Santa Cruz researchers and published March 10 in Harmful Algae.
>> Read the Full Article

During the nighttime, it is hotter in the city than in nearby suburbs or the countryside. But just how much hotter differs between cities. Researchers from the MSE2 (CNRS / MIT) international joint research laboratory and the Centre Interdisciplinaire des Nanosciences de Marseille (CNRS / Aix-Marseille University)1 have shown that the determining factor is how cities are structured: more organized cities, like many in North America with straight and perpendicular streets, trap more heat. Conversely, cities that are less organized, like those founded long ago, shed heat easily. The team's findings, published in Physical Review Letters (March 9, 2018), suggest new directions to explore for optimal urban planning and energy management.
>> Read the Full Article