Vast amounts of river-borne sediment are trapped behind the world’s large dams, depriving areas downstream of material that is badly needed to build up the marshes and wetlands that act as a buffer against rising seas.
In September 2011, after 20 years of planning, workers began dismantling the Elwha and Glines dams on the Elwha River in northwestern Washington state. At the time, it was the largest dam removal project in U.S. history, and it took nearly three years for both barriers to be dismantled and for the river to once again flow freely.
Over the course of their nearly century-long lives, the two dams collected more than 24 million cubic yards of sediment behind them, enough to fill the Seattle Seahawks football stadium eight times. And since their removal, the Elwha has taken back the trapped sediment and distributed it downstream, causing the riverine ecosystem to be rebuilt and transformed. Massive quantities of silt, sand, and gravel have been carried to the coast, resurrecting a wetlands ecosystem long deprived of sediment.
>> Read the Full Article
The quality of the air in California may be improving, but it's still dire.
That's according to the American Lung Association's recent "State of the Air 2017" report, which labeled the state and region a leader in air pollution, with the highest ozone levels.
The annual study ranks the cleanest and most polluted areas in the country by grading counties in the U.S. based on harmful recorded levels of ozone (smog) and particle pollution. The 2017 report used data collected from 2013 to 2015.
>> Read the Full Article
A federally funded research effort to revolutionize water treatment has yielded an off-grid technology that uses energy from sunlight alone to turn salt water into fresh drinking water. The desalination system, which uses a combination of membrane distillation technology and light-harvesting nanophotonics, is the first major innovation from the Center for Nanotechnology Enabled Water Treatment (NEWT), a multi-institutional engineering research center based at Rice University
NEWT’s “nanophotonics-enabled solar membrane distillation” technology, or NESMD, combines tried-and-true water treatment methods with cutting-edge nanotechnology that converts sunlight to heat. The technology is described online this week in the Proceedings of the National Academy of Sciences.
>> Read the Full Article
Murali Darapuneni recalls stories about how difficult it was for his ancestors during times of drought conditions and famine in India in the early 1900s.
“They had limited resources and research at that time,” he said. “My grandparents told me about those stories and how difficult it was to feed the people.”
Darapuneni is now an assistant professor of semi-arid cropping systems in the New Mexico State University College of Agricultural, Consumer and Environmental Sciences. Part of the Department of Plant and Environmental Sciences, he is researching efficient dryland cropping systems at the NMSU Agricultural Science Center at Tucumcari.
>> Read the Full Article