Ice Cores Yield Rich History of Climate Change

Typography
On Friday, Jan. 28 in Antarctica, a research team investigating the last 100,000 years of Earth's climate history reached an important milestone completing the main ice core to a depth of 3,331 meters (10,928 feet) at West Antarctic Ice Sheet Divide (WAIS). The project will be completed over the next two years with some additional coring and borehole logging to obtain additional information and samples of the ice for the study of the climate record contained in the core.

On Friday, Jan. 28 in Antarctica, a research team investigating the last 100,000 years of Earth's climate history reached an important milestone completing the main ice core to a depth of 3,331 meters (10,928 feet) at West Antarctic Ice Sheet Divide (WAIS). The project will be completed over the next two years with some additional coring and borehole logging to obtain additional information and samples of the ice for the study of the climate record contained in the core.

!ADVERTISEMENT!

As part of the project, begun six years ago, the team, funded by the National Science Foundation (NSF), has been drilling deep into the ice at the WAIS Divide site and recovering and analyzing ice cores for clues about how changes in the concentration of greenhouse gases in the atmosphere have influenced the Earth's climate over time.

Friday's milestone was reached at a depth of 3,331 meters--about two miles deep--creating the deepest ice core ever drilled by the U.S. and the second deepest ice core ever drilled by any group, second only to the ice core drilled at Russia's Vostok Station as part of a joint French/U.S./Russian collaboration in the 1990s.

"By improving our understanding of how natural changes in greenhouse gas influenced climate in the past, the science community will be able to do a better job of predicting future climate changes caused by the emissions of greenhouse gases by human activity," said Kendrick Taylor, chief scientist for the WAIS Divide Ice Core Project.

Article continues: http://www.sciencedaily.com/releases/2011/02/110202114955.htm