New molecular design to get hydrogen-powered cars motoring

Typography

A radical new process that allows hydrogen to be efficiently sourced from liquid formic acid could be one step forward in making the dream of hydrogen-powered cars an economic reality.

Using formic acid to produce hydrogen has never been considered viable because it requires high temperatures to decompose and also produces waste by-products.

But the University of Melbourne's Professor Richard O'Hair has led an international team of scientists in designing a molecular catalyst that forces formic acid to produce only hydrogen and carbon dioxide and at a low temperature of only 70°C.

A radical new process that allows hydrogen to be efficiently sourced from liquid formic acid could be one step forward in making the dream of hydrogen-powered cars an economic reality.

Using formic acid to produce hydrogen has never been considered viable because it requires high temperatures to decompose and also produces waste by-products.

But the University of Melbourne's Professor Richard O'Hair has led an international team of scientists in designing a molecular catalyst that forces formic acid to produce only hydrogen and carbon dioxide and at a low temperature of only 70°C.

Professor O'Hair, from the University's School of Chemistry and Bio21 Institute, worked in collaboration with Professors Philippe Dugourd (from the University of Lyon), Philippe Maitre (University of Paris South), Bonačić-Koutecký (Humboldt-University Berlin) and Dr. Roger Mulder (CSIRO Manufacturing) for the study.

Hydrogen Fuel Station image: Jóhann Heiðar Árnason via Wikimedia Commons

Read more at EurekAlert!