Why Japan's Coastal Zones might be Disappearing due to Climate Change

Typography

Projections of Future Beach Loss in Japan Due to Sea-Level Rise and Uncertainties in Projected Beach Loss

As G20 Summit 2017 drew to a close, the issue of climate change divided the world. As it happened, 19 of the 20 leaders were able to agree on all points made in the joint declaration (known as the communique)-with the exception of Donald Trump, who could not agree on climate change; thus resulting in 'G19' (i.e. G20 sans the United States) releasing a joint statement on climate change. Leaving politics aside, for the people around the world who inhabit as much as 71% of the world's coast lines and are surrounded by oceans, this is not just a statement on a piece of paper, but a commitment of world leaders to take the wellbeing of our further generations to heart, to tackle the burning of fossil fuels and global warming collectively.

Climate change can cause a range of effects on coastal environments. Some of the effects are related to erosional processes such as a decrease in sediment supply, changes in the intensity and frequency of extreme events (storms and cyclones, among others), and changes in sea levels and in the wave climate. The estimation of changes due to sea level rise (SLR) and climate change is a major issue with respect to future coastal management decisions.

No one is more concerned than the Japanese, who are surrounded by seas; about 73% of Japan is forested, mountainous, and unsuitable for agricultural, industrial, or residential use, as a result, the habitable zones are mainly located in or near coastal areas, so much so that, there are growing concerns in Japan of the impact of climate change on their coastal surroundings, prompting the Japanese government to set up an Intergovernmental Panel on Climate Change (IPCC) to undertake a study on climate change, to provide future projections of coastal erosion based on representative concentration pathway (RCP) scenarios. So far, the study indicates that rising sea levels (SLR) and increasing maximum wave heights due to climate change would lead to shoreline retreat.

Continue reading at World Scientific Publishing

Image via World Scientific Publishing