21
Wed, Feb

Technique Expedites Chemical Screening to Prioritize Toxicity Testing

Typography

Researchers from North Carolina State University have developed a high-throughput technique that can determine if a chemical has the potential to activate key genes in seconds rather than the typical 24 hours or more. The technique can be used to prioritize chemicals for in-depth testing to determine their toxicity.

 

“There is a large backlog of chemicals awaiting toxicity testing, which is both time consuming and expensive,” says Gerald LeBlanc, head of the Department of Biological Sciences at NC State and corresponding author of two papers on the work. “This new approach can help us identify chemicals that are more likely to pose an environmental hazard and, therefore, should be prioritized for testing. And this technique could also be used to assess and prioritize chemicals for human toxicity testing.”

Currently, high-throughput techniques rely on “reporter genes.” This means that chemicals are introduced into a cell and, if they activate the reporter gene, a measurable response can be observed in a day or so.

But the new approach works much more quickly by making use of the fact that the first step in triggering a cellular response is for the chemical to bind target proteins, which cause the target proteins to recruit other proteins.

Specifically, the NC State researchers modified two proteins: Met, which is a target protein, and SRC, which is the protein that Met recruits when it is bound by the chemical.

Continue reading at North Carolina State University

Image courtesy of NCSU