Salt is Key Ingredient for Cheaper and More Efficient Batteries

Typography

A new design of rechargeable battery, created using salt, could lead the way for greener energy.

Researchers at the University of Nottingham Ningbo China (UNNC) have joined forces with a specialist group at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences on designs for the novel energy store which allows for greater power while also lasting longer than conventional batteries.

A new design of rechargeable battery, created using salt, could lead the way for greener energy.

Researchers at the University of Nottingham Ningbo China (UNNC) have joined forces with a specialist group at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences on designs for the novel energy store which allows for greater power while also lasting longer than conventional batteries.

Growing demand for electric vehicles and more sustainable forms of transport means finding new forms of energy storage such as batteries, super-capacitators and fuel cells.

Currently a major challenge facing the industry is the poor performance quality of rechargeable batteries which often lose energy and power too quickly over time.

The collaboration team is led by Professor Jiangiang Wang, an expert in molten salts chemistry at SINAP, and Professor George Chen, Li Dak Sum Chair Professor in Electrochemical Technologies at UNNC, and has worked to design a possible solution outlined in a paper published in the journal ChemSusChem.

Read more at University of Nottingham