Enriching Solid-State Batteries

Typography

Researchers at MIT have come up with a new pulsed laser deposition technique to make thinner lithium electrolytes using less heat, promising faster charging and potentially higher-voltage solid-state lithium ion batteries.

Researchers at MIT have come up with a new pulsed laser deposition technique to make thinner lithium electrolytes using less heat, promising faster charging and potentially higher-voltage solid-state lithium ion batteries.

Key to the new technique for processing the solid-state battery electrolyte is alternating layers of the active electrolyte lithium garnet component (chemical formula, Li6.25Al0.25La3Zr2O12, or LLZO) with layers of lithium nitride (chemical formula Li3N). First, these layers are built up like a wafer cookie using a pulsed laser deposition process at about 300 degrees Celsius (572 degrees Fahrenheit). Then they are heated to 660 C and slowly cooled, a process known as annealing.

During the annealing process, nearly all of the nitrogen atoms burn off into the atmosphere and the lithium atoms from the original nitride layers fuse into the lithium garnet, forming a single lithium-rich, ceramic thin film. The extra lithium content in the garnet film allows the material to retain the cubic structure needed for positively charged lithium ions (cations) to move quickly through the electrolyte. The findings were reported in a Nature Energy paper published online recently by MIT Associate Professor Jennifer L. M. Rupp and her students Reto Pfenninger, Michal M. Struzik, Inigo Garbayo, and collaborator Evelyn Stilp.

Read more at Massachusetts Institute of Technology