Researchers Find Declining Nitrogen Availability in a Nitrogen Rich World

Typography

Since the mid-20th century, research and discussion has focused on the negative effects of excess nitrogen on terrestrial and aquatic ecosystems.

Since the mid-20th century, research and discussion has focused on the negative effects of excess nitrogen on terrestrial and aquatic ecosystems. However, new evidence indicates that the world is now experiencing a dual trajectory in nitrogen availability with many areas experiencing a hockey-stick shaped decline in the availability of nitrogen. In a new review paper in the journal Science, researchers have described the causes for these declines and the consequences on how ecosystems function.

“There is both too much nitrogen and too little nitrogen on Earth at the same time,” said Rachel Mason, lead author on the paper and former postdoctoral scholar at the National Socio-environmental Synthesis Center.

Over the last century, humans have more than doubled the total global supply of reactive nitrogen through industrial and agricultural activities. This nitrogen becomes concentrated in streams, inland lakes, and coastal bodies of water, sometimes resulting in eutrophication, low-oxygen dead-zones, and harmful algal blooms. These negative impacts of excess nitrogen have led scientists to study nitrogen as a pollutant. However, rising carbon dioxide and other global changes have increased demand for nitrogen by plants and microbes. In many areas of the world that are not subject to excessive inputs of nitrogen from people, long-term records demonstrate that nitrogen availability is declining, with important consequences for plant and animal growth.

Nitrogen is an essential element in proteins and as such its availability is critical to the growth of plants and the animals that eat them. Gardens, forests, and fisheries are almost all more productive when they are fertilized with moderate amounts of nitrogen. If plant nitrogen becomes less available, plants grow more slowly and their leaves are less nutritious to insects, potentially reducing growth and reproduction, not only of insects, but also the birds and bats that feed on them.

Read more at: University of Maryland Center for Environmental Science