Microplastics’ Shape Determines How Far They Travel in the Atmosphere

Typography

Just like the land and the ocean, the atmosphere is marred by a variety of pollutants. 

Just like the land and the ocean, the atmosphere is marred by a variety of pollutants. In recent years, a new form has been identified: micron-size microplastic debris that can be carried by the jet stream across oceans and continents.

A Cornell collaboration has developed a model to simulate the atmospheric transport of microplastic fibers and found that their shape plays a crucial role in how far they travel. While previous studies assumed these fibers to be spherical, the research shows that flat fibers are more prevalent and travel farther in the lower atmosphere.

The modeling has the potential to help scientists determine the sources of the pervasive waste – which could inform policy efforts to reduce it.

The group’s paper, “Long-Distance Atmospheric Transport of Microplastic Fibres Influenced by Their Shapes,” published Sept. 25 in Nature Geoscience. The lead author is former postdoctoral researcher Shuolin Xiao.

Read more at Cornell University