Revolutionary Breakthrough in Solar Energy: World’s Most Efficient QD Solar Cells Developed

Typography

A groundbreaking research breakthrough in solar energy has propelled the development of the world’s most efficient quantum dot (QD) solar cell, marking a significant leap towards the commercialization of next-generation solar cells. 

A groundbreaking research breakthrough in solar energy has propelled the development of the world’s most efficient quantum dot (QD) solar cell, marking a significant leap towards the commercialization of next-generation solar cells. This cutting-edge QD solution and device have demonstrated exceptional performance, retaining their efficiency even after long-term storage. Led by Professor Sung-Yeon Jang from the School of Energy and Chemical Engineering at UNIST, a team of researchers has unveiled a novel ligand exchange technique. This innovative approach enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.

“Our developed technology has achieved an impressive 18.1% efficiency in QD solar cells,” stated Professor Jang. “This remarkable achievement represents the highest efficiency among quantum dot solar cells recognized by the prestigious National Renewable Energy Laboratory (NREL) in the United States.”

The increasing interest in related fields is evident, as last year, three scientists who discovered and developed QDs, as advanced nanotechnology products, were awarded the Nobel Prize in Chemistry. QDs are semiconducting nanocrystals with typical dimensions ranging from several to tens of nanometers, capable of controlling photoelectric properties based on their particle size. PQDs, in particular, have garnered significant attention from researchers due to their outstanding photoelectric properties. Furthermore, their manufacturing process involves simple spraying or application to a solvent, eliminating the need for the growth process on substrates. This streamlined approach allows for high-quality production in various manufacturing environments.

Read more at Ulsan National Institute of Science and Technology (UNIST)