Study of Velvet Worm Slime Could Revolutionize Sustainable Material Design

Typography

McGill researchers want to harness a natural process that enables slime’s transformation from liquid to fibre and back again.

McGill researchers want to harness a natural process that enables slime’s transformation from liquid to fibre and back again.

A new discovery about the slime ejected by velvet worms could revolutionize sustainable material design, according to a study by McGill University researchers. Their findings outline how a naturally occurring protein structure, conserved across species from Australia, Singapore and Barbados over nearly 400 million years of evolution, enables the slime’s transformation from liquid to fibre and back again. It’s a discovery that could inspire next-generation recyclable bioplastics.

"Nature has already figured out a way to make materials that are both strong and recyclable,” said Matthew Harrington, a chemistry professor and Canada Research Chair in green chemistry, who led the study. “By decoding the molecular structure of velvet worm slime, we're now one step closer to replicating that efficiency for the materials we use every day."

Velvet worms, small caterpillar-like creatures found in humid forests of the southern hemisphere, use their slime to capture prey. When ejected, the slime rapidly hardens into fibres as strong as nylon. The slime dissolves in water and can be reconstituted into new fibres. Until now, the molecular mechanism behind this reversibility remained a mystery.

Read more at McGill University