Phytoplankton are the foundation of ocean life, providing the energy that supports nearly all marine species. Levels of phytoplankton in an ocean area may seem like a good predictor for the amount of fish that can be caught there, but a new study by Nereus Program researchers finds that this relationship is not so straightforward.

“Using measurements of phytoplankton growth at the base of the food web to estimate the potential fish catch for different parts of the ocean has long been a dream of oceanographers,” says author Ryan Rykaczewski, Assistant Professor at University of South Carolina and Nereus Program Alumnus. “We know that these two quantities must be related, but there are several steps in the food chain that complicate the conversion of phytoplankton growth to fish growth.”

Read more ...

An analysis of fossilized parrotfish teeth and sea urchin spines by researchers at Scripps Institution of Oceanography at the University of California San Diego showed that when there are more algae-eating fish on a reef, it grows faster.

In the new study, published in the Jan. 23 issue of the journal Nature Communication, Scripps researchers Katie Cramer and Richard Norris developed a 3,000-year record of the abundance of parrotfish and urchins on reefs from the Caribbean side of Panama to help unravel the cause of the alarming modern-day shift from coral- to algae-dominated reefs occurring across the Caribbean.

“Our reconstruction of past and present reefs from fossils demonstrates that when overfishing wipes out parrotfish, reef health declines,” said Cramer, a postdoctoral researcher at Scripps and lead author of the study.

Read more ...

If coastal salt marshes are like savings accounts, with sediment as the principal, all eight Atlantic and Pacific coast salt marshes studied are "in the red," researchers found.

Scientists working on a rapid assessment technique for determining which US coastal salt marshes are most imperiled by erosion were surprised to find that all eight of the Atlantic and Pacific Coast marshes where they field-tested their method are losing ground, and half of them will be gone in 350 years’ time if they don’t recapture some lost terrain.

Read more ...

A team of Michigan State University scientists has genetically sequenced two species of poisonous mushrooms, discovering that they can theoretically produce billions of compounds through one molecular assembly line. This may open the door to efficiently tackling some lethal diseases.

Read more ...

Since the GOES-16 satellite lifted off from Cape Canaveral on November 19, scientists, meteorologists and ordinary weather enthusiasts have anxiously waited for the first photos from NOAA’s newest weather satellite, GOES-16, formerly GOES-R.

The release of the first images today is the latest step in a new age of weather satellites. It will be like high-definition from the heavens.

Read more ...

Researchers know that more, and more dangerous, storms have begun to occur as the climate warms. A team of scientists has reported an underlying explanation, using meteorological satellite data gathered over a 35-year period.

The examination of the movement and interaction of mechanical energies across the atmosphere, published Jan. 24 in the journal Nature Communications, is the first to explore long-term variations of the Lorenz energy cycle – a complex formula used to describe the interaction between potential and kinetic energy in the atmosphere – and offers a new perspective on what is happening with global warming.

Read more ...

More Articles ...

Subcategories