23
Fri, Feb

Canola Oil Linked to Worsened Memory and Learning Ability in Alzheimer's Disease, Temple Researchers Report

Typography

Canola oil is one of the most widely consumed vegetable oils in the world, yet surprisingly little is known about its effects on health. Now, a new study published online December 7 in the journal Scientific Reports by researchers at the Lewis Katz School of Medicine at Temple University (LKSOM) associates the consumption of canola oil in the diet with worsened memory, worsened learning ability and weight gain in mice which model Alzheimer’s disease. The study is the first to suggest that canola oil is more harmful than healthful for the brain.

Canola oil is one of the most widely consumed vegetable oils in the world, yet surprisingly little is known about its effects on health. Now, a new study published online December 7 in the journal Scientific Reports by researchers at the Lewis Katz School of Medicine at Temple University (LKSOM) associates the consumption of canola oil in the diet with worsened memory, worsened learning ability and weight gain in mice which model Alzheimer’s disease. The study is the first to suggest that canola oil is more harmful than healthful for the brain.

“Canola oil is appealing because it is less expensive than other vegetable oils, and it is advertised as being healthy,” explained Domenico Praticò, MD, Professor in the Departments of Pharmacology and Microbiology and Director of the Alzheimer’s Center at LKSOM, as well as senior investigator on the study. “Very few studies, however, have examined that claim, especially in terms of the brain.”

Curious about how canola oil affects brain function, Dr. Praticò and Elisabetta Lauretti, a graduate student in Dr. Pratico’s laboratory at LKSOM and co-author on the new study, focused their work on memory impairment and the formation of amyloid plaques and neurofibrillary tangles in an Alzheimer's disease mouse model. Amyloid plaques and phosphorylated tau, which is responsible for the formation of tau neurofibrillary tangles, contribute to neuronal dysfunction and degeneration and memory loss in Alzheimer's disease. The animal model was designed to recapitulate Alzheimer's in humans, progressing from an asymptomatic phase in early life to full-blown disease in aged animals.

Read more at Temple University Health System