• Navigation and spatial memory — brain region newly identified to be involved

    Research conducted in a collaboration between Drs. Dun Mao, a researcher in Dr. Bruce McNaughton’s lab at the Canadian Centre for Behavioural Neuroscience at the University of Lethbridge, and Steffen Kandler, a researcher in Professor Vincent Bonin’s lab at Neuro-Electronics Research Flanders (NERF) in Belgium, has found neural activity patterns that may assist with spatial memory and navigation.

    Their study, Sparse orthogonal population representation of spatial context in the retrosplenial cortex, has been published in Nature Communications.

    >> Read the Full Article
  • Freeze-dried foam soaks up carbon dioxide

    Rice University materials scientists have created a light foam from two-dimensional sheets of hexagonal-boron nitride (h-BN) that absorbs carbon dioxide.

    They discovered freeze-drying h-BN turned it into a macro-scale foam that disintegrates in liquids. But adding a bit of polyvinyl alcohol (PVA) into the mix transformed it into a far more robust and useful material.

    The foam is highly porous and its properties can be tuned for use in air filters and as gas absorption materials, according to researchers in the Rice lab of materials scientist Pulickel Ajayan.

    Their work appears in the American Chemical Society journal ACS Nano.

    >> Read the Full Article
  • Print No Evil: Three-Layer Technique Helps Secure Additive Manufacturing

    Additive manufacturing, also known as 3-D printing, is replacing conventional fabrication processes in critical areas ranging from aerospace components to medical implants. But because the process relies on software to control the 3-D printer, additive manufacturing could become a target for malicious attacks – as well as for unscrupulous operators who may cut corners.

    >> Read the Full Article
  • Smart electrical grids more vulnerable to cyber attacks

    Electricity distribution systems in the USA are gradually being modernized and transposed to smart grids, which make use of two-way communication and computer processing. This is making them increasingly vulnerable to cyber attacks. In a recent paper in Elsevier’s International Journal of Critical Infrastructure Protection, Dr. Sujeet Shenoi and his colleagues from the Tandy School of Computer Science, University of Tulsa, US, have analyzed these security issues. Their report provides crucial keys to ensuring the security of our power supply.

    "Sophisticated cyberattacks on advanced metering infrastructures are a clear and present danger," Dr. Shenoi pointed out. Such attacks affect both customers and distribution companies and can take various forms, such as stealing customer data (allowing a burglar to determine if a residence is unoccupied, for instance), taking power from particular customers (resulting in increased power bills), disrupting the grid and denying customers power on a localized or widespread basis.

    >> Read the Full Article
  • Habitat destruction and poaching is threatening the Sungazer

    The Sungazer (Smaug giganteus), a dragon-like lizard species endemic to the Highveld regions of South Africa, is facing an assault on two fronts as farming and industrialisation encroaches on its natural habitat – which already consist of only a several hundred square kilometres globally – while the illegal global pet trade is adding pressure on pushing the species into extinction.

    >> Read the Full Article
  • Antifreeze to improve aeroplanes, ice cream and organ transplants

    The design of airplane wings and storing organs for transplant could both become safer and more effective, thanks to a synthetic antifreeze which prevents the growth of ice crystals, developed by researchers at the University of Warwick.

    >> Read the Full Article
  • Turning pollen into a low-cost fertilizer

    As the world population continues to balloon, agricultural experts puzzle over how farms will produce enough food to keep up with demand. One tactic involves boosting crop yields. Toward that end, scientists have developed a method to make a low-cost, biocompatible fertilizer with carbon dots derived from rapeseed pollen. The study, appearing in ACS Omega, found that applying the carbon dots to hydroponically cultivated lettuce promoted its growth by 50 percent.

    >> Read the Full Article
  • New process allows live look inside insects

    Until now, live insects have been too wriggly to make good subjects for scientists wanting to understand more about insect innards. But an interdisciplinary team of biologists and imaging specialists from Western has worked out a novel micro-imaging solution that’s leading to unprecedented new ways of viewing insect development.

    >> Read the Full Article
  • Balloons and drones and clouds; oh, my!

    Last week, researchers at Sandia National Laboratories flew a tethered balloon and an unmanned aerial system, colloquially known as a drone, together for the first time to get Arctic atmospheric temperatures with better location control than ever before. In addition to providing more precise data for weather and climate models, being able to effectively operate UASs in the Arctic is important for national security.

    “Operating UASs in the remote, harsh environments of the Arctic will provide opportunities to harden the technologies in ways that are directly transferable to the needs of national security in terms of robustness and reliability,” said Jon Salton, a Sandia robotics manager. “Ultimately, integrating the specialized operational and sensing needs required for Arctic research will transfer to a variety of national security needs.”

    >> Read the Full Article
  • Researchers clarify mystery about proposed battery material

    Battery researchers agree that one of the most promising possibilities for future battery technology is the lithium-air (or lithium-oxygen) battery, which could provide three times as much power for a given weight as today’s leading technology, lithium-ion batteries. But tests of various approaches to creating such batteries have produced conflicting and confusing results, as well as controversies over how to explain them.

    Now, a team at MIT has carried out detailed tests that seem to resolve the questions surrounding one promising material for such batteries: a compound called lithium iodide (LiI). The compound was seen as a possible solution to some of the lithium-air battery’s problems, including an inability to sustain many charging-discharging cycles, but conflicting findings had raised questions about the material’s usefulness for this task. The new study explains these discrepancies, and although it suggests that the material might not be suitable after all, the work provides guidance for efforts to overcome LiI’s drawbacks or find alternative materials.

    >> Read the Full Article