Mathematics and climate change

Typography
Gaining insights into the nature of sea ice.

Providence, RI---In 1994, University of Utah mathematician Ken Golden went to the Eastern Weddell Sea for the Antarctic Zone Flux Experiment. The sea's surface is normally covered with sea ice, the complex composite material that results when sea water is frozen. During a powerful winter storm, Golden observed liquid sea water welling up and flooding the sea ice surface, producing a slushy mixture of sea water and snow that freezes into snow-ice. With his mathematician's eyes he observed this phenomenon and said to himself: "That's percolation!"

Golden is an expert in mathematical models of percolation, a physical process in which a fluid moves and filters through a porous solid. Soon after the 1994 trip he started trying to understand how the mathematics of percolation could describe aspects of the formation and behavior of sea ice. His results appeared in a landmark paper in Science in 1998, written with co-authors S. F. Ackley and V. I. Lytle. Ever since then, Golden has been a leader in the international effort to model polar climate dynamics and has brought a new level of rigor and precision to this area of research.

Golden describes the mathematics he and collaborators have developed in "Climate Change and the Mathematics of Transport in Sea Ice", which will appear this month in the Notices of the American Mathematical Society. His article marks Mathematics Awareness Month, celebrated each year in April. For 2009, the theme of Mathematics Awareness Month is "Mathematics and Climate". Golden is serving as Chair of the Mathematics Awareness Month Committee this year.

!ADVERTISEMENT!

Sea ice is very different from icebergs, glaciers, and ice sheets, all of which originate on land. Sea ice is a polycrystalline composite of pure ice with liquid brine inclusions, plus air pockets and solid salts. As the boundary layer between the ocean and atmosphere in the polar regions, sea ice functions as both ocean sunscreen and blanket, playing a key role as both an indicator and agent of climate change.

Article continues