Beijing growing explosively, impacting weather and climate

Typography

A new study by scientists using data from NASA's QuikScat satellite has demonstrated a novel technique to quantify urban growth based on observed changes in physical infrastructure. The researchers used the technique to study the rapid urban growth in Beijing, China, finding that its physical area quadrupled between 2000 and 2009. 

A team led by Mark Jacobson of Stanford University, Palo Alto, California, and Son Nghiem of NASA's Jet Propulsion Laboratory, Pasadena, California, used data from QuikScat to measure the extent of infrastructure changes, such as new buildings and roads, in China's capital. They then quantified how urban growth has changed Beijing's wind patterns and pollution, using a computer model of climate and air quality developed by Jacobson. 

A new study by scientists using data from NASA's QuikScat satellite has demonstrated a novel technique to quantify urban growth based on observed changes in physical infrastructure. The researchers used the technique to study the rapid urban growth in Beijing, China, finding that its physical area quadrupled between 2000 and 2009. 

A team led by Mark Jacobson of Stanford University, Palo Alto, California, and Son Nghiem of NASA's Jet Propulsion Laboratory, Pasadena, California, used data from QuikScat to measure the extent of infrastructure changes, such as new buildings and roads, in China's capital. They then quantified how urban growth has changed Beijing's wind patterns and pollution, using a computer model of climate and air quality developed by Jacobson. 

New infrastructure alone -- the buildings and roads themselves, not including additional pollution created by the new city dwellers and their vehicles -- created a ring of impacts around the older parts of Beijing. The impacts included increasing winter temperatures by about 5 to 7 degrees Fahrenheit (3 to 4 degrees Celsius) and reducing wind speed by about 2 to 7 mph (1 to 3 meters per second), making the city air more stagnant. 

"Buildings slow down winds just by blocking the air, and also by creating friction," Jacobson explained. "You have higher temperatures because covering the soil reduces evaporation, which is a cooling process." Roads and roofs heat up more during the day than soil or vegetation would because they are drier. The heat and more stagnant air create a cascade of consequences, such as increased ground-level ozone pollution.

Beijing's official city limits enclose an area larger than the state of Connecticut, but much of that real estate is undeveloped and likely to remain so -- nature preserves and rugged mountains, for example. The Chinese capital is far from the only world city whose official area differs from its actual footprint. 

"There are so many definitions of urban extent, both legislative and administrative," Nghiem pointed out. "To learn how physical change affects the environment, you cannot use an arbitrary political definition. The reality is what's happening on the ground." The new method allows researchers to pinpoint just that.

Data from NASA's QuikScat satellite show the changing extent of Beijing between 2000 and 2009 through changes to its infrastructure. Gray and black indicate buildings, with the tallest and largest buildings in the city's commercial core appearing lighter gray. Other colors show changes in areas not yet urbanized (for example, clearing land or cutting down trees), with the rate of change indicated by color. Blue-green indicates the least change, yellow-orange more change, and red the greatest change. Image credit: NASA/JPL-Caltech

Read more at JPL NASA.