What makes erionite carcinogenic?

Typography

The mineral erionite is considered to be highly carcinogenic and is on the World Health Organisation's list of substances that cause cancer. A few years ago, an entire village in Turkey actually had to be moved, because the substance was very common in the surrounding area and every second inhabitant died of a particular type of cancer caused by breathing in erionite particles. Up to now it has been thought that iron as a constituent element of the mineral erionite is the reason for the carcinogenic effect. However, mineralogists of Friedrich Schiller University Jena (Germany), together with colleagues from the University of Modena (Italy), have discovered that this metal does not even appear in the crystal structure of erionite.

The mineral erionite is considered to be highly carcinogenic and is on the World Health Organisation's list of substances that cause cancer. A few years ago, an entire village in Turkey actually had to be moved, because the substance was very common in the surrounding area and every second inhabitant died of a particular type of cancer caused by breathing in erionite particles. Up to now it has been thought that iron as a constituent element of the mineral erionite is the reason for the carcinogenic effect. However, mineralogists of Friedrich Schiller University Jena (Germany), together with colleagues from the University of Modena (Italy), have discovered that this metal does not even appear in the crystal structure of erionite.

Iron is not part of erionite

"Like asbestos, erionite is composed of fibres, which are inhaled and reach the lungs, where they cause considerable damage, because they are too long to be eliminated by the body's own defences," explains Dr Kilian Pollok of the University Jena. "In both cases, doctors have until now considered the iron in the mineral to be mainly responsible for the cancer cases, as that metal encourages the transition from inflammation to tumour development." However, the latest findings mean that this assumption needs to be re-examined, as, unlike most substances lumped together under the umbrella term asbestos, iron does not form part of erionite's crystal structure.

Continue reading at Friedrich-Schiller-Universitaet Jena

Photo: Fibers of the mineral erionite with adhering particles, taken by a transmission electron microscope at the Institute of Geosciences.

Photo Credit: Kilian Pollok / FSU