Biologist tracks climate change drivers from as far back as medieval era

Typography

York biology Professor Sapna Sharma is interested in predicting the effects of environmental stressors – for example, climate change, invasive species, land use change and habitat alteration − on ecosystems, and improving the scientific approaches used to generate these predictions. Some of her latest research, funded by the Natural Sciences and Engineering Research Council (NSERC) and others, and published in Scientific Reports, suggests that environmental stressors are driving the long-term changes in ice seasonality.

York biology Professor Sapna Sharma is interested in predicting the effects of environmental stressors – for example, climate change, invasive species, land use change and habitat alteration − on ecosystems, and improving the scientific approaches used to generate these predictions. Some of her latest research, funded by the Natural Sciences and Engineering Research Council (NSERC) and others, and published in Scientific Reports, suggests that environmental stressors are driving the long-term changes in ice seasonality.

What’s remarkable about this study is that Sharma’s international team − including researchers from the Finnish Environmental Institute, the University of Wisconsin-Madison, Rutgers University, the Center for Integrated Data Analytics (Wisconsin) and Osaka Prefecture University (Japan) – had access to records of ice freezing and melting that had been collected, directly by human observation, centuries prior to the start of the Industrial Revolution. In fact, this research team turned to records as far back as medieval Japan and Finland on the eve of Enlightenment, and over a vast period of time, which extends to present day.

There’s a lot to be learned from ice. The dates of lake and river ice freezing and melting or breaking up can be used to analyze climate change because ice responds sensitively to climatic change and variability.

When did we start looking at ice in this way? Quantitative, direct annual observations by humans of climatic variables starting before the Industrial Revolution – that is, the 1840s – are rare. That’s why Sharma’s research has captured the imaginations of many. Scientists and non-scientists are intrigued by the notion of what this old ice data can tell us.

 

Continue reading at York University.

Photo via York University.