Primordial Black Holes May Have Helped to Forge Heavy Elements

Typography

Astronomers like to say we are the byproducts of stars, stellar furnaces that long ago fused hydrogen and helium into the elements needed for life through the process of stellar nucleosynthesis.

As the late Carl Sagan once put it: “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star stuff.”

But what about the heavier elements in the periodic chart, elements such as gold, platinum and uranium?

Astronomers like to say we are the byproducts of stars, stellar furnaces that long ago fused hydrogen and helium into the elements needed for life through the process of stellar nucleosynthesis.

As the late Carl Sagan once put it: “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star stuff.”

But what about the heavier elements in the periodic chart, elements such as gold, platinum and uranium?

Astronomers believe most of these “r-process elements”—elements much heavier than iron—were created, either in the aftermath of the collapse of massive stars and the associated supernova explosions, or in the merging of binary neutron star systems.

“A different kind of furnace was needed to forge gold, platinum, uranium and most other elements heavier than iron,” explained George Fuller, a theoretical astrophysicist and professor of physics who directs UC San Diego’s Center for Astrophysics and Space Sciences. “These elements most likely formed in an environment rich with neutrons.”

Read more at University of California - San Diego

Image: Artist’s depiction of a neutron star. Credit: NASA