24
Sat, Feb

Surprising Discovery Could Lead to Better Batteries

Typography

A collaboration led by scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has observed an unexpected phenomenon in lithium-ion batteries—the most common type of battery used to power cell phones and electric cars. As a model battery generated electric current, the scientists witnessed the concentration of lithium inside individual nanoparticles reverse at a certain point, instead of constantly increasing. This discovery, which was published on January 12 in the journal Science Advances, is a major step toward improving the battery life of consumer electronics.

A collaboration led by scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has observed an unexpected phenomenon in lithium-ion batteries—the most common type of battery used to power cell phones and electric cars. As a model battery generated electric current, the scientists witnessed the concentration of lithium inside individual nanoparticles reverse at a certain point, instead of constantly increasing. This discovery, which was published on January 12 in the journal Science Advances, is a major step toward improving the battery life of consumer electronics.

“If you have a cell phone, you likely need to charge its battery every day, due to the limited capacity of the battery’s electrodes,” said Esther Takeuchi, a SUNY distinguished professor at Stony Brook University and a chief scientist in the Energy Sciences Directorate at Brookhaven Lab. “The findings in this study could help develop batteries that charge faster and last longer.”

Visualizing batteries on the nanoscale

Inside every lithium-ion battery are particles whose atoms are arranged in a lattice—a periodic structure with gaps between the atoms. When a lithium-ion battery supplies electricity, lithium ions flow into empty sites in the atomic lattice. 

Read more at DOE/Brookhaven National Laboratory

Image: Brookhaven scientists are shown at the Condensed Matter Physics and Materials Science Department's TEM facility, where part of the study was conducted. Pictured from left to right are Jianming Bai, Feng Wang, Wei Zhang, Yimei Zhu, and Lijun Wu. (Credit: Brookhaven National Laboratory)