20
Tue, Feb

UCLA scientists make cells that enable the sense of touch

Typography

Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have, for the first time, coaxed human stem cells to become sensory interneurons — the cells that give us our sense of touch. The new protocol could be a step toward stem cell–based therapies to restore sensation in paralyzed people who have lost feeling in parts of their body.

Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have, for the first time, coaxed human stem cells to become sensory interneurons — the cells that give us our sense of touch. The new protocol could be a step toward stem cell–based therapies to restore sensation in paralyzed people who have lost feeling in parts of their body.

The study, which was led by Samantha Butler, a UCLA associate professor of neurobiology and member of the Broad Stem Cell Research Center, was published today in the journal Stem Cell Reports.

Sensory interneurons, a class of neurons in the spinal cord, are responsible for relaying information from throughout the body to the central nervous system, which enables the sense of touch. The lack of a sense of touch greatly affects people who are paralyzed. For example, they often cannot feel the touch of another person, and the inability to feel pain leaves them susceptible to burns from inadvertent contact with a hot surface.

“The field has for a long time focused on making people walk again,” said Butler, the study’s senior author. “‘Making people feel again doesn’t have quite the same ring. But to walk, you need to be able to feel and to sense your body in space; the two processes really go hand in glove.”

Read more at University of California - Los Angeles Health Sciences

Image: Human embryonic stem cell-derived neurons (green) showing nuclei in blue. Left: with retinoic acid added. Right: with retinoic acid and BMP4 added, creating proprioceptive sensory interneurons (pink).  CREDIT: UCLA Broad Stem Cell Research Center / Stem Cell Reports