A new way to find better battery materials

Typography

A new approach to analyzing and designing new ion conductors — a key component of rechargeable batteries — could accelerate the development of high-energy lithium batteries, and possibly other energy storage and delivery devices such as fuel cells, researchers say.

A new approach to analyzing and designing new ion conductors — a key component of rechargeable batteries — could accelerate the development of high-energy lithium batteries, and possibly other energy storage and delivery devices such as fuel cells, researchers say.

The new approach relies on understanding the way vibrations move through the crystal lattice of lithium ion conductors and correlating that with the way they inhibit ion migration. This provides a way to discover new materials with enhanced ion mobility, allowing rapid charging and discharging. At the same time, the method can be used to reduce the material’s reactivity with the battery’s electrodes, which can shorten its useful life. These two characteristics — better ion mobility and low reactivity — have tended to be mutually exclusive.

The new concept was developed by a team led by W.M. Keck Professor of Energy Yang Shao-Horn, graduate student Sokseiha Muy, recent graduate John Bachman PhD ’17, and Research Scientist Livia Giordano, along with nine others at MIT, Oak Ridge National Laboratory, and institutions in Tokyo and Munich. Their findings were reported in the journal Energy and Environmental Science.

The new design principle has been about five years in the making, Shao-Horn says. The initial thinking started with the approach she and her group have used to understand and control catalysts for water splitting, and applying it to ion conduction — the process that lies at the heart of not only rechargeable batteries, but also other key technologies such as fuel cells and desalination systems. While electrons, with their negative charge, flow from one pole of the battery to the other (thus providing power for devices), positive ions flow the other way, through an electrolyte, or ion conductor, sandwiched between those poles, to complete the flow.

Read more at Massachusetts Institute of Technology

Image: Diagram illustrates the crystal lattice of a proposed battery electrolyte material called Li3PO4. The researchers found that measuring how vibrations of sound move through the lattice could reveal how well ions – electrically charged atoms or molecules – could travel through the solid material, and therefore how they would work in a real battery. In this diagram, the oxygen atoms are shown in red, the purple pyramid-like shapes are phosphate (PO4) molecules. The orange and green spheres are ions of lithium. CREDIT: Sokseiha Muy