Virginia Tech 'Fog Harp' Increases Collection Capacity for Clean Water

Typography

Fog harvesting may look like whimsical work.

After all, installing giant nets along hillsides and mountaintops to catch water out of thin air sounds more like folly than science. However, the practice has become an important avenue to clean water for many who live in arid and semi-arid climates around the world.

Fog harvesting may look like whimsical work.

After all, installing giant nets along hillsides and mountaintops to catch water out of thin air sounds more like folly than science. However, the practice has become an important avenue to clean water for many who live in arid and semi-arid climates around the world.

A passive, durable, and effective method of water collection, fog harvesting consists of catching the microscopic droplets of water suspended in the wind that make up fog. Fog harvesting is possible – and has gained traction over the last several decades – in areas of Africa, South America, Asia, the Middle East, and even California. As illustrated by recent headlines of South Africa's countdown to "Day Zero," or the day the water taps are expected to run dry, water scarcity continues to be a growing problem across the globe. Leading researchers now estimate that two-thirds of the world's population already live under conditions of severe water scarcity at least one month of the year.

Fog harvesting could help alleviate that shortage, and now an interdisciplinary research team at Virginia Tech has improved the traditional design of fog nets to increase their collection capacity by threefold.

Read more at Virginia Tech

Image: Study co-author Josh Tulkoff constructs a large prototype of the fog harp, which consists of a vertical array of 700 wires and is based on initial experimental results. Tulkoff was part of an interdisciplinary research team at Virginia Tech that discovered parallel wire arrays could increase the water collection capacity of fog nets by threefold. (Credit: Virginia Tech)