Photonic Crystal Features of Fossilized Algae Hold Promise for Improved Food Safety Testing

Typography

Researchers have used the fossilized remains of algae to take a key step toward being able to more sensitively detect harmful contaminants in food.

Researchers have used the fossilized remains of algae to take a key step toward being able to more sensitively detect harmful contaminants in food.

The findings are important because the statistics for foodborne illnesses paint a stark picture: Each year 48 million people get sick from tainted food, 128,000 end up in the hospital, and 3,000 die, according to the Centers for Disease Control and Prevention.

The work by Alan Wang of Oregon State University’s College of Engineering and collaborators in China involved diatomite, which is derived from fossilized cell walls of diatoms, and gold nanoparticles.

Diatoms, whose species number more than 200,000, hold great potential for biosensing, with their intricate cell walls, known as frustules, offering promising nanotechnology applications.

Diatomite, Wang notes, “is essentially composed of hydrated biosilica with periodic nanopores and it possesses photonic crystal features.”

Read more at Oregon State University

Image: Histamine detection (Credit: Oregon State University)