Charcoal: Major Missing Piece in the Global Carbon Cycle

Typography

Most of the carbon resulting from wildfires and fossil fuel combustion is rapidly released into the atmosphere as carbon dioxide. Researchers at the University of Zurich have now shown that the leftover residue, so-called black carbon, can age for millennia on land and in rivers en route to the ocean, and thus constitutes a major long-term reservoir of organic carbon. The study adds a major missing piece to the puzzle of understanding the global carbon cycle.

Most of the carbon resulting from wildfires and fossil fuel combustion is rapidly released into the atmosphere as carbon dioxide. Researchers at the University of Zurich have now shown that the leftover residue, so-called black carbon, can age for millennia on land and in rivers en route to the ocean, and thus constitutes a major long-term reservoir of organic carbon. The study adds a major missing piece to the puzzle of understanding the global carbon cycle.

Due to its widespread occurrence and tendency to linger in the environment, black carbon may be one of the keys in predicting and mitigating global climate change. In wildfires, typically one third of the burned organic carbon is retained as black carbon residues rather than emitted as greenhouse gases. Initially, black carbon remains stored in the soil and in lakes, and is then eroded from river banks and transported to the ocean. However, black carbon is not taken into account in global carbon budget warming simulations, because its role in the global carbon cycle is not well understood as a result of a lack of knowledge about fluxes, stocks, and residence times in the environment.

First worldwide assessment of black carbon river transport

“Our study is the first to address the flux of black carbon in sediments by rivers on a global scale. We found that a surprisingly large amount of black carbon is exported by rivers,” says lead author Alysha Coppola, a postdoctoral researcher in the Department of Geography at the University of Zurich (UZH). The study includes some of the largest rivers worldwide, such as the Amazon, Congo, Brahmaputra, and major Arctic rivers. It is the first global river assessment of the radiocarbon age values and amount of black carbon transported as particles. The researchers found that the more total river sediment is transported by rivers to the coast, the more black carbon travels with it and is ultimately buried in ocean sediments, forming an important long-term sink for atmospheric carbon dioxide.

Read more at University of Zurich

Image: Rivers transport black carbon from land to sea. (Credit: Gabriela Santilli, ETH Zürich)