Computer Program Predicts Risk of Deadly Irregular Heart Beats

Typography

Combining a wealth of information derived from previous studies with data from more than 500 patients, an international team led by researchers from Johns Hopkins has developed a computer-based set of rules that more accurately predicts when patients with a rare heart condition might benefit—or not—from lifesaving implanted defibrillators. 

Combining a wealth of information derived from previous studies with data from more than 500 patients, an international team led by researchers from Johns Hopkins has developed a computer-based set of rules that more accurately predicts when patients with a rare heart condition might benefit—or not—from lifesaving implanted defibrillators. The new research, published online on March 27 in the European Heart Journal provides physicians with a risk prediction tool that will identify patients most likely to benefit from the protection provided by an implantable defibrillator while preventing a fifth from receiving unnecessary—and potentially risky—surgery to place the devices.

An estimated 1 in 5,000 people have arrhythmogenic right ventricular cardiomyopathy (ARVC), a complex, multigene, inherited disease of the lower heart chambers that can cause deadly arrhythmias, or irregular heartbeats. Although rare, it’s a very frequent cause of sudden death in young adults, according to the new study’s leaders. The average age of diagnosis is 31, although it can emerge from adolescence through middle age.

ARVC can be effectively managed in many cases with an implantable cardioverter-defibrillator (ICD), a device that detects electrical abnormalities in heart muscle and immediately shocks the heart to re-establish normal rhythm. ICDs prevent sudden cardiac death and save lives. But these devices come with risks and side effects, according to co-lead investigator Cynthia A. James, Ph.D., assistant professor of medicine in the Division of Cardiology and a certified genetic counselor at the Johns Hopkins University School of Medicine. The devices may deliver inappropriate shocks when patients aren’t experiencing life-threatening arrhythmias. And the ICD itself or pacemaker leads placed in the heart to deliver a shock may fail over time, necessitating replacement with surgery. Infections brought on by these devices—and even just wearing out the device’s battery with time—also require replacement, hospitalizations and expense, she adds.

Read more at Johns Hopkins Medicine

Photo credit: AbsolutVision via Pixabay