Using DNA Templates to Harness the Sun’s Energy

Typography

As the world struggles to meet the increasing demand for energy, coupled with the rising levels of CO2 in the atmosphere from deforestation and the use of fossil fuels, photosynthesis in nature simply cannot keep up with the carbon cycle.

As the world struggles to meet the increasing demand for energy, coupled with the rising levels of CO2 in the atmosphere from deforestation and the use of fossil fuels, photosynthesis in nature simply cannot keep up with the carbon cycle. But what if we could help the natural carbon cycle by learning from photosynthesis to generate our own sources of energy that didn't generate CO2? Artificial photosynthesis does just that, harnessing the sun's energy to generate fuel in ways that minimize CO2 production.

In a recent paper published in the Journal of the American Chemical Society, a team of researchers led by Hao Yan, Yan Liu and Neal Woodbury of the School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics at Arizona State University report significant progress in optimizing systems that mimic the first stage of photosynthesis, capturing and harnessing light energy from the sun.

Read more at Arizona State University

Image: Double-stranded DNA as a template to guide self-assembly of cyanine dye forming strongly-coupled dye aggregates. These DNA-templated dye aggregates serve as “exciton wires” to facilitate directional, efficient energy transfer over distances up to 32 nm.  CREDIT: Arizona State University