Artificial Intelligence Detects A New Class of Mutations Behind Autism

Typography

Many mutations in DNA that contribute to disease are not in actual genes but instead lie in the 99% of the genome once considered "junk."

Many mutations in DNA that contribute to disease are not in actual genes but instead lie in the 99% of the genome once considered "junk." Even though scientists have recently come to understand that these vast stretches of DNA do in fact play critical roles, deciphering these effects on a wide scale has been impossible until now.

Using artificial intelligence, a Princeton University-led team has decoded the functional impact of such mutations in people with autism. The researchers believe this powerful method is generally applicable to discovering such genetic contributions to any disease.

Publishing May 27 in the journal Nature Genetics, the researchers analyzed the genomes of 1,790 families in which one child has autism spectrum disorder but other members do not. The method sorted among 120,000 mutations to find those that affect the behavior of genes in people with autism. Although the results do not reveal exact causes of cases of autism, they reveal thousands of possible contributors for researchers to study.

Read more at Princeton University

Image: Genes predicted to be disrupted by regulatory mutations in people with autism tended to be involved in brain cell functioning and fell into two categories. One category (shown in blue) relates to synapses, communication hubs between neurons, and the other (shown in red) relates to chromatin, the highly structured form of DNA and proteins required for proper gene expression in chromosomes.  CREDIT: Troyanskaya Lab/Neil Adelantar