‘Hot Spots’ Increase Efficiency of Solar Desalination

Typography

Rice University’s solar-powered approach for purifying salt water with sunlight and nanoparticles is even more efficient than its creators first believed.

Rice University’s solar-powered approach for purifying salt water with sunlight and nanoparticles is even more efficient than its creators first believed.

Researchers in Rice’s Laboratory for Nanophotonics (LANP) this week showed they could boost the efficiency of their solar-powered desalination system by more than 50% simply by adding inexpensive plastic lenses to concentrate sunlight into “hot spots.” The results are available online in the Proceedings of the National Academy of Sciences.

“The typical way to boost performance in solar-driven systems is to add solar concentrators and bring in more light,” said Pratiksha Dongare, a graduate student in applied physics at Rice’s Brown School of Engineering and co-lead author of the paper. “The big difference here is that we’re using the same amount of light. We’ve shown it’s possible to inexpensively redistribute that power and dramatically increase the rate of purified water production.”

In conventional membrane distillation, hot, salty water is flowed across one side of a sheetlike membrane while cool, filtered water flows across the other. The temperature difference creates a difference in vapor pressure that drives water vapor from the heated side through the membrane toward the cooler, lower-pressure side. Scaling up the technology is difficult because the temperature difference across the membrane — and the resulting output of clean water — decreases as the size of the membrane increases. Rice’s “nanophotonics-enabled solar membrane distillation” (NESMD) technology addresses this by using light-absorbing nanoparticles to turn the membrane itself into a solar-driven heating element.

Read more at Rice University

Image: Rice University researchers (from left) Pratiksha Dongare, Alessandro Alabastri and Oara Neumann showed that Rice's 'nanophotonics-enabled solar membrane distillation' (NESMD) system was more efficient when the size of the device was scaled up and light was concentrated in 'hot spots.' (Credit: Jeff Fitlow/Rice University)