Engineering New Signalling Networks to Produce Crops That Need Less Fertiliser

Typography

An interdisciplinary research collaboration between the Universities of Oxford and Cambridge has engineered a novel synthetic plant-microbe signalling pathway that could provide the foundation for transferring nitrogen fixation to cereals.

An interdisciplinary research collaboration between the Universities of Oxford and Cambridge has engineered a novel synthetic plant-microbe signalling pathway that could provide the foundation for transferring nitrogen fixation to cereals.

Published in Nature Communications today, the team of plant scientists, microbiologists and chemists used synthetic biology techniques to design and then engineer a molecular dialogue between plants and the bacteria surrounding their roots in a zone called the rhizosphere. This synthetic signalling system could be a vital step towards successfully engineering nitrogen-fixing symbiosis in non-legume crops like wheat and maize.

Enhancing the root microbiota has enormous potential for improving crop yields in nutrient-poor soils and reducing chemical fertiliser use.

Joint lead author, Dr Barney Geddes, from Oxford’s Department of Plant Sciences, said: ‘Plants influence the microbiota of their rhizosphere by sending out chemical signals that attract or suppress specific microbes. Engineering cereal plants to produce a signal to communicate with and control the bacteria on their roots could potentially enable them to take advantage of the growth-promoting services of those bacteria, including nitrogen fixation.

Read more at University of Oxford

Photo Credit: picjumbo_com via Pixabay