Stanford Researchers Develop a Stress Test to Separate the Tough Bacteria from the Tender

Typography

Bacteria. Sometimes we can’t live with ’em, but there’s a growing appreciation that we can’t live without ’em.

Bacteria. Sometimes we can’t live with ’em, but there’s a growing appreciation that we can’t live without ’em. Whether it’s disease-causing pathogens or beneficial species that live in communities known as microbiomes, scientists agree on one thing – we need to know more about bacteria, particularly how they are built and how they live together.

“Today we study a tiny subset of bacteria,” said Bo Wang, assistant professor of bioengineering at Stanford. “We need new ways to poke and prod these organisms to figure out what makes them tick, as well as novel methods to identify the vast number of species that still remain in the shadows.”

With this in mind, Wang’s lab has developed a clever way to strip out almost everything but the core exoskeleton of a bacterium, leaving behind an empty cell wall that is essential to maintaining the distinctive shape of any bacterial cell. The researchers then filled this shell with an expandable fluid to measure how much internal stress each species of microbe could withstand. Observing these hollowed-out bacteria under a microscope enabled them to determine which species became bloated by the outward pressure, and which resisted expansion and stayed the same size.

Read more at Stanford University

Image by Raman Oza from Pixabay