HKU Paleontologists Discover Solid Evidence of Formerly Elusive Abrupt Sea-level Jump

Typography

Meltwater pulses (MWPs) known as abrupt sea-level rise due to injection of melt water are of particular interests to scientists to investigate the interactions between climatic, oceanic and glacial systems.

Eustatic sea-level rise will inevitably affect cities especially those on coastal plains of low elevation like Hong Kong. A recent study published in Quaternary Science Reviews presented evidence of abrupt sea level change between 11,300–11,000 years ago in the Arctic Ocean. The study was conducted by Ms Skye Yunshu Tian, PhD student of School of Biological Sciences and Swire Institute of Marine Science, the University of Hong Kong (HKU) during her undergraduate final year project in the Ecology & Biodiversity Major, solving the puzzle of second largest meltwater pulse (labelled as “MWP-1B” next to the largest and already well understood MWP-1A).

During the last deglaciation, melting of large ice sheets in the Northern hemisphere had contributed to profound global sea level changes. However, even the second largest MWP-1B is not well understood. Its timing and magnitude remain actively debated due to the lack of clear evidence not only from tropical areas recording near-eustatic sea-level change, but also from high-latitude areas where the ice sheets melted.

The research study, led by Ms Tian under the supervision of Dr Moriaki Yasuhara, Associate Professor of School of Biological Sciences, HKU and Dr Yuanyuan Hong, Postdoctoral Fellow of School of Biological Sciences, HKU, and in collaboration with scientists in HKU and UiT The Arctic University of Norway, discovered a robust evidence of formerly elusive abrupt sea-level jump event during the climatic warming from the last ice age to the current climate state. The study presented evidence of abrupt sea level change between 11,300–11,000 years ago of 40m–80m in Svalbard, the Arctic Ocean.

Continue reading at Hong Kong University

Image via Hong Kong University