Engineers Develop Precision Injection System For Plants

Typography

While the human world is reeling from one pandemic, there are several ongoing epidemics that affect crops and put global food production at risk.

While the human world is reeling from one pandemic, there are several ongoing epidemics that affect crops and put global food production at risk. Oranges, olives, and bananas are already under threat in many areas due to diseases that affect plants’ circulatory systems and that cannot be treated by applying pesticides.

A new method developed by engineers at MIT may offer a starting point for delivering life-saving treatments to plants ravaged by such diseases.

These diseases are difficult to detect early and to treat, given the lack of precision tools to access plant vasculature to treat pathogens and to sample biomarkers. The MIT team decided to take some of the principles involved in precision medicine for humans and adapt them to develop plant-specific biomaterials and drug-delivery devices.

The method uses an array of microneedles made of a silk-based biomaterial to deliver nutrients, drugs, or other molecules to specific parts of the plant. The findings are described in the journal Advanced Science, in a paper by MIT professors Benedetto Marelli and Jing-Ke-Weng, graduate student Yunteng Cao, postdoc Eugene Lim at MIT, and postdoc Menglong Xu at the Whitehead Institute for Biomedical Research.

Read more at Massachusetts Institute of Technology

Image: A microinjection device (red) is attached to a citrus tree, providing a way of injecting pesticide or other materials directly into the plant's circulatory system.  CREDIT: Courtesy of the researchers