Plant Tissue Engineering Improves Drought and Salinity Tolerance

Typography

Research in College of Agriculture, Biotechnology & Natural Resources addresses future population growth and food shortages.

After several years of experimentation, scientists have engineered thale cress, or Arabidopsis thaliana, to behave like a succulent, improving water-use efficiency, salinity tolerance and reducing the effects of drought. The tissue succulence engineering method devised for this small flowering plant can be used in other plants to improve drought and salinity tolerance with the goal of moving this approach into food and bioenergy crops.

“Water-storing tissue is one of the most successful adaptations in plants that enables them to survive long periods of drought. This anatomical trait will become more important as global temperatures rise, increasing the magnitude and duration of drought events during the 21st century,” said University of Nevada, Reno Biochemistry and Molecular Biology Professor John Cushman, co-author of a new scientific paper on plant tissue succulence published in the Plant Journal.

The work will be combined with another of Cushman’s projects: engineering another trait called crassulacean acid metabolism (CAM), a water-conserving mode of photosynthesis that can be applied to plants to improve water-use efficiency.

Continue reading at University of Nevada Reno

Image via University of Nevada Reno