Sodium Found To Regulate The Biological Clock Of Mice

Typography

A new study from McGill University shows that increases in the concentrations of blood sodium can have an influence on the biological clock of mice, opening new research avenues for potentially treating the negative effects associated with long distance travel or shift work.

A new study from McGill University shows that increases in the concentrations of blood sodium can have an influence on the biological clock of mice, opening new research avenues for potentially treating the negative effects associated with long distance travel or shift work.

The findings, published in Nature by former McGill PhD student Claire Gizowski and Charles Bourque, a professor in McGill’s Department of Neurology-Neurosurgery, are the first to show that injecting mice with a salt solution leads to the activation of neurons associated with the brain’s master circadian clock – the suprachiasmatic nucleus (SCN).

Our biological clock – or circadian rhythm - adapts our body’s cells and organs to changing requirements at different times of day. Prolonged disruption of these rhythms because of jetlag or shift work can lead to adverse health effects.

Though it is well established that light is the primary factor regulating our body’s biological clock, it was unknown if or how physiological factors could regulate the SCN.

Read more at McGill University

Image: Researchers from McGill University have shown that injecting mice with a salt solution leads to the activation of neurons associated with the brain’s master circadian clock – the suprachiasmatic nucleus.  CREDIT: McGill University