Climate Protection: Bayreuth Chemists Develop New Material for the Separation of Co₂ From Industrial Waste Gases

Typography

Chemists at the University of Bayreuth have developed a material that could well make an important contribution to climate protection and sustainable industrial production. 

Chemists at the University of Bayreuth have developed a material that could well make an important contribution to climate protection and sustainable industrial production. With this material, the greenhouse gas carbon dioxide (CO₂) can be specifically separated from industrial waste gases, natural gas, or biogas, and thereby made available for recycling. The separation process is both energy efficient and cost-effective. In the journal "Cell Reports Physical Science" the researchers present the structure and function of the material.

The "Green Deal", presented by the European Commission in 2019, calls for the net emissions of greenhouse gases within the EU to be reduced to zero by 2050. This requires innovative processes that can separate and retain CO₂ from waste gases and other gas mixtures so that it is not released into the atmosphere.

The material developed in Bayreuth has one fundamental advantage over previous separation processes: It is capable of completely removing CO₂ from gas mixtures without chemically binding CO₂. These gas mixtures can be waste gases from industrial plants, but also natural gas or biogas. In all these cases, CO₂ accumulates in the cavities of the material solely due to physical interaction. From there, it can be released without great expenditure of energy, to be made available again as a resource for industrial production. Hence, the separation process works, chemically speaking, according to the principle of physical adsorption. Like a spacious storage tank, the new material can be filled with and emptied of carbon dioxide in an energy-efficient way. In Bayreuth laboratories, it was designed in such a way as to only separate out CO₂ and no other gas from the most varied gas mixtures.

Read more at University of Bayreuth

Image: Martin Rieß M.Sc. in front of the measuring system for dynamic gas adsorption in one of Bayreuth's laboratories for Inorganic Chemistry. (Credit: Photo: Christian Wißler)