Stable Catalysts for New Energy

Typography

On the way to a CO2-neutral economy, we need to perfect a whole range of technologies - including the electrochemical extraction of hydrogen from water, fuel cells, or carbon capture. 

On the way to a CO2-neutral economy, we need to perfect a whole range of technologies - including the electrochemical extraction of hydrogen from water, fuel cells, or carbon capture. All these technologies have one thing in common: they only work if suitable catalysts are used. For many years, researchers have therefore been investigating which materials are best suited for this purpose.

At TU Wien and the Comet Center for Electrochemistry and Surface Technology CEST in Wiener Neustadt, a unique combination of research methods is available for this kind of research. Together scientists could now show: Looking for the perfect catalyst is not only about finding the right material, but also about its orientation. Depending on the direction in which a crystal is cut and which of its atoms it thus presents to the outside world on its surface, its behavior can change dramatically.

Efficiency or stability

"For many important processes in electrochemistry, precious metals are often used as catalysts, such as iridium oxide or platinum particles," says Prof. Markus Valtiner from the Institute of Applied Physics at TU Wien (IAP). In many cases these are catalysts with particularly high efficiency. However, there are also other important points to consider: The stability of a catalyst and the availability and recyclability of the materials. The most efficient catalyst material is of little use if it is a rare metal, dissolves after a short time, undergoes chemical changes or becomes unusable for other reasons.

Read more at Vienna University of Technology

Image: Carina Brunnhofer (left), Dominik Dworschak (right) (Credit: TU Wien)