Wood Formation Can Now Be Followed in Real-Time - and Possibly Serve the Climate and Builders of Tomorrow

Typography

A genetic engineering method makes it possible to observe how woody cell walls are built in plants. 

A genetic engineering method makes it possible to observe how woody cell walls are built in plants. The new research in wood formation, conducted by the University of Copenhagen and others, opens up the possibility of developing sturdier construction materials and perhaps more climate efficient trees.

The ability of certain tree species to grow taller than 100 meters is due to complex biological engineering. Besides needing the right amounts of water and light to do so, this incredible ability is also a result of cell walls built sturdily enough to keep a tree both upright and able to withstand the tremendous pressure created as water is sucked up from its roots and into its leaves.

This ability is made possible by what are known as the secondary cell walls of plants. Secondary cell walls, also known as xylem or wood, are built according to a few distinct and refined patterns that allow wall strength to be maintained while still allowing connecting cells to transport water from one to the other.

How these wall patterns are built has been a bit of a mystery. Now, the mystery is starting to resolve. For the first time, it is possible to observe the process of woody cell wall pattern formation within a plant - and in real-time no less. A team of international researchers, including Professor Staffan Persson of the University of Copenhagen, has found a way to monitor this biological process live, under the microscope.

Read more at University of Copenhagen - Faculty of Science

Image: Visualization of cell wall patterns. (Credit: Dr. René Schneider)