Sea Level Will Rise Faster Than Previously Thought

Typography

There are two main elements to observe when assessing sea level rise. 

There are two main elements to observe when assessing sea level rise. One is the loss of the ice on land, e.g., melting mountain glaciers and inland ice sheets on Greenland and Antarctica, and the other is that the sea will expand as it gets warmer. The more its temperature increases, the faster the sea will rise. Researchers at the Niels Bohr Institute, University of Copenhagen have constructed a new method of quantifying just how fast the sea will react to warming. The level of the sea is monitored meticulously, and we can compare the responsiveness in models with historical data. The comparison shows that former predictions of sea level have been too conservative, so the sea will likely rise more and faster than previously believed. The result is now published in the European Geosciences Union journal Ocean Science.

During the last 150 years, in what is called the industrial period, sea levels have been rising, as Aslak Grinsted, associate professor at the Niels Bohr Institute research section, Physics of Ice, Climate and Earth, explains. “We expect, of course, that there is a connection between rising temperature and the rate indicating the momentum of the rise. Observations are telling us that the rate has been accelerating over the past 150 years. This means we can create a picture of how the connection between temperature and sea level rise has been, historically. But 150 years is not very long, actually, because of the great inertia in the warming of the oceans and inland ice sheets, so several hundreds of years can pass before we see the full consequences of warming in the atmosphere. This is why we compare the observations with the results from the detailed computer models we use to depict a future scenario. Among others, the climate panel of the United Nation’s Intergovernmental Panel on Climate Change (IPCC), has gathered these projections, made from a collection of many smaller models. These, in turn, have been validated, obviously, as well as can be done”.

Read more at University of Copenhagen - Faculty of Science

Photo Credit: tiburi via Pixabay