Study of Structural Variants in Cacao Genomes Yields Clues About Plant Diversity

Typography

An exhaustive and painstaking comparison of the genomes of multiple strains of the cacao tree by a team of researchers has provided insights into the role genomic structural variants play in the regulation of gene expression and chromosome evolution, giving rise to the differences within populations of the plant.

An exhaustive and painstaking comparison of the genomes of multiple strains of the cacao tree by a team of researchers has provided insights into the role genomic structural variants play in the regulation of gene expression and chromosome evolution, giving rise to the differences within populations of the plant.

The research, which has implications for plant genetics in general, would not have been possible before powerful computers made the high-resolution sequencing of genomes possible, affordable and relatively fast, according to team member Mark Guiltinan, J. Franklin Styer Professor of Horticultural Botany and professor of plant molecular biology in Penn State’s College of Agricultural Sciences.

“The genomes of different populations of cacao trees are 99.9% identical, but it’s the structural variants in that one-tenth of 1% of their genomes that accounts for the plant’s diversity in different regions and its adaptation to climate and various diseases,” he said. “This study makes an association between structural variation and the ability of a plant to adapt to a local environment.”

Read more at: Penn State

The genomes of different populations of cacao trees like these are 99.9% identical, but it’s the structural variants in that one tenth of 1% of their genomes that accounts for the plant’s diversity in different regions and its adaptation to climate and various diseases. (Photo Credit: Robert Wilson)