Thin-Film, High-Frequency Antenna Array Offers New Flexibility for Wireless Communications

Typography

Princeton researchers have taken a step toward developing a type of antenna array that could coat an airplane’s wings, function as a skin patch transmitting signals to medical implants, or cover a room as wallpaper that communicates with internet of things (IoT) devices.

Princeton researchers have taken a step toward developing a type of antenna array that could coat an airplane’s wings, function as a skin patch transmitting signals to medical implants, or cover a room as wallpaper that communicates with internet of things (IoT) devices.

The technology, which could enable many uses of emerging 5G and 6G wireless networks, is based on large-area electronics, a way of fabricating electronic circuits on thin, flexible materials. The researchers described its development in a paper published Oct. 7 in Nature Electronics.

The approach overcomes limitations of conventional silicon semiconductors, which can operate at the high radio frequencies needed for 5G applications, but can only be made up to a few centimeters wide, and are difficult to assemble into the large arrays required for enhanced communication with low-power devices.

“To achieve these large dimensions, people have tried discrete integration of hundreds of little microchips. But that’s not practical — it’s not low-cost, it’s not reliable, it’s not scalable on a wireless systems level,” said senior study author Naveen Verma, a professor of electrical and computer engineering and director of Princeton’s Keller Center for Innovation in Engineering Education.

Read more at Princeton University, Engineering School

Image: Princeton researchers have developed a new type of phased array antenna based on large-area electronics technology, which could enable many uses of emerging 5G and 6G wireless networks. The researchers tested the system on the roof of Princeton's Andlinger Center for Energy and the Environment. (Credit: Can Wu)