Climate Change Could Make High Arctic Fertile Ground for Emerging Pandemics

Typography

Study co-authors Audrée Lemieux and Stéphane Aris-Brosou and their team at the Faculty of Science are the first to assess DNA and RNA sequencing data from this environment using a method developed in comparative biology.

Study co-authors Audrée Lemieux and Stéphane Aris-Brosou and their team at the Faculty of Science are the first to assess DNA and RNA sequencing data from this environment using a method developed in comparative biology. The team collected samples from Lake Hazen, the largest freshwater lake and ecosystem in the High Arctic to test how viral spillover risk is affected by glacier runoff. A viral spillover happens when a virus infects a new host for the first time.

“Resorting to a comparative analysis, we show that the risk of viral spillover increases with runoff from glacier melt – a proxy for the effect of climate change,” says Aris-Brosou, an Associate Professor in the Department of Biology. “Should climate change also shift species range of potential viral vectors and reservoirs northwards, the High Arctic could become fertile ground for emerging pandemics."

Ms. Lemieux developed an algorithm to determine the risk of viral spillover. Results suggested the risk was greater for lake samples taken from larger waterways, which contain more meltwater from glaciers. As global temperatures rise, glaciers in this area are expected to become larger, generating more meltwater, and hence increasing spillover risk.

Read more at: University of Ottawa

The research team drilling holes in the ice at the H-Sed site with the northern shore of Lake Hazen in the background. (Graham Colby / University of Ottawa)