Rethinking Mountain Water Security

Typography

The study, led by Imperial College London, University of Birmingham, University of Zurich, the British Geological Survey and Pontifical Catholic University of Peru along with local partners, suggests this lack of integrated water security knowledge is due to poor understanding of what happens ‘beyond the cryosphere’ – that is the contribution from water sources other than frozen water such as hillslopes, wetlands, and groundwater.

The study, led by Imperial College London, University of Birmingham, University of Zurich, the British Geological Survey and Pontifical Catholic University of Peru along with local partners, suggests this lack of integrated water security knowledge is due to poor understanding of what happens ‘beyond the cryosphere’ – that is the contribution from water sources other than frozen water such as hillslopes, wetlands, and groundwater.

Emerging research is showing that the effects of global warming and climate change is enhanced in mountainous areas. Glacier-related disasters such as ice avalanches and glacial lake outburst floods are becoming more commonplace, but there are serious and life-threatening implications for the millions of people who depend on mountain water supply.

In the new study, the researchers described huge gaps in available data on how communities use water from glaciers and mountain snow in combination with other water sources. The picture is especially difficult to construct because of complex mountain landscapes, localised weather systems and a low density of data station records.

Read more at: University of Birmingham

Photo Credit: suju-foto via Pixabay