Oil Reservoirs Under Pressure

Typography

Industrial-scale injection of gases into geological rock reservoirs is of increasing importance for the energy sector for uses ranging from flushing out remaining fossil fuels to locking away CO2 emissions and preventing them from contributing to climate change.

Industrial-scale injection of gases into geological rock reservoirs is of increasing importance for the energy sector for uses ranging from flushing out remaining fossil fuels to locking away CO2 emissions and preventing them from contributing to climate change. Computational modeling and theoretical calculations undertaken by KAUST researchers can offer new insights into the key interactions of injected gases with other fluids in the reservoir, as well as interactions with the rock itself.

“Many countries, including Saudi Arabia, aim for net zero carbon emissions, and the focus is on initiatives in the energy sectors to achieve this reduction,” says KAUST's Shuyu Sun. “In practice, CO2 can be separated from industrial exhausts and stored in depleted reservoirs.”

The injection of CO2 has often been combined with enhanced oil recovery (EOR), Sun adds. “The injection of gas into the reservoirs can improve oil recovery by swelling the oil and reducing its viscosity and interfacial tension,” Sun says. Understanding how the different fluids behave and interact is crucial for EOR processes, he adds. “We have identified, at the molecular level, the effect of temperature, pressure, oil type, gas type and brine type on these fluid-fluid interactions,” Sun says.

Read more at: King Abdullah University of Science and Technology

Photo Credit: neico via Pixabay