NASA Missions Find ‘Jetlets’ Could Power the Solar Wind

Typography

Scientists with NASA’s Parker Solar Probe mission have uncovered significant new clues about the origins of the solar wind – a continual stream of charged particles released from the Sun that fills the solar system.

Scientists with NASA’s Parker Solar Probe mission have uncovered significant new clues about the origins of the solar wind – a continual stream of charged particles released from the Sun that fills the solar system.

Observations from multiple space and ground-based observatories show the solar wind could be largely fueled by small-scale jets, or “jetlets,” at the base of the corona – the Sun’s upper atmosphere. This finding is helping scientists better understand the 60-year-old mystery of what heats and accelerates the solar wind.

“This new data shows us how the solar wind gets going at its source,” said Nour Raouafi, the study lead and the Parker Solar Probe project scientist at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland. “You can see the flow of the solar wind rising from tiny jets of million-degree plasma all over the base of the corona. These findings will have a huge impact on our understanding of the heating and acceleration of the coronal and solar wind plasma.”

Read more at: NASA Goddard Space Flight Center

In the center, a gold, rotating Sun. Gold and black swirls across the surface of the Sun. Around the edges, streams of golden solar particles escape the star, into space. A composite video from NASA’s Solar Dynamics Observatory and NOAA’s Geostationary Operational Environmental Satellite – R Series Solar Ultraviolet Imager instrument shows small-scale jetlet activity at the base of the solar corona, or the Sun’s upper atmosphere, and its extension to higher altitudes. This can be seen in the wavy structures emanating from the surface of the Sun. The observations were made over the course of approximately 10 hours on April 28, 2021. (Photo Credit: NASA/SDO/GOES-R)