Toward New, Computationally Designed Cybersteels

Typography

What do the Apple watch and the Raptor engine of the SpaceX Starship have in common?

Answer: Both are made, in part, from advanced materials developed over only a few years — as opposed to the usual decades — with the help of computers in a field pioneered at MIT. Now eight MIT professors — including one of the inventors of the field, known as computational materials design — aim to make the field even more powerful, thanks to a five-year $7.2 million grant from the Office of Naval Research.

What do the Apple watch and the Raptor engine of the SpaceX Starship have in common?

Answer: Both are made, in part, from advanced materials developed over only a few years — as opposed to the usual decades — with the help of computers in a field pioneered at MIT. Now eight MIT professors — including one of the inventors of the field, known as computational materials design — aim to make the field even more powerful, thanks to a five-year $7.2 million grant from the Office of Naval Research.

The work is part of the next phase of the Materials Genome Initiative (MGI) announced by President Barack Obama in 2011. The MGI is developing “a fundamental database of the parameters that direct the assembly of the structures of materials,” much like the Human Genome Project “is a database that directs the assembly of the structures of life,” says Gregory B. Olson, the Thermo-Calc Professor of the Practice in the MIT Department of Materials Science and Engineering (DMSE). The particular fundamental database structure for materials is known as “CALPHAD,” invented at MIT in the 1950s, with its commercialization pioneered by the Thermo-Calc company that supports Olson’s professorship.

Read more at Massachusetts Institute of Technology

Image: An MIT team is working toward creating better cybersteels, or steels designed with computing technology. Key to the work is the incorporation of fundamental atomic-level data about steel. This image shows the electronic charge distribution at grain boundaries within a steel. Image courtesy of QuesTek Innovations.