Researchers Develop Electrolyte Enabling High Efficiency of Safe, Sustainable Zinc Batteries

Typography

Scientists led by an Oregon State University researcher have developed a new electrolyte that raises the efficiency of the zinc metal anode in zinc batteries to nearly 100%, a breakthrough on the way to an alternative to lithium-ion batteries for large-scale energy storage.

Scientists led by an Oregon State University researcher have developed a new electrolyte that raises the efficiency of the zinc metal anode in zinc batteries to nearly 100%, a breakthrough on the way to an alternative to lithium-ion batteries for large-scale energy storage.

The research is part of an ongoing global quest for new battery chemistries able to store renewable solar and wind energy on the electric grid for use when the sun isn’t shining and the wind isn’t blowing.

Xiulei “David” Ji of the OSU College of Science and a collaboration that included HP Inc. and GROTTHUSS INC., an Oregon State spinout company, reported their findings in Nature Sustainability.

“The breakthrough represents a significant advancement toward making zinc metal batteries more accessible to consumers,” Ji said. “These batteries are essential for the installation of additional solar and wind farms. In addition, they offer a secure and efficient solution for home energy storage, as well as energy storage modules for communities that are vulnerable to natural disasters.”

Read more at: Oregon State University

Wind energy generation. (Photo Credit: Oregon State University)