Underground Water Could be the Solution to Green Heating and Cooling


About 12% of the total global energy demand comes from heating and cooling homes and businesses.

About 12% of the total global energy demand comes from heating and cooling homes and businesses. A new study suggests that using underground water to maintain comfortable temperatures could reduce consumption of natural gas and electricity in this sector by 40% in the United States. The approach, called aquifer thermal energy storage (ATES), could also help prevent blackouts caused by high power demand during extreme weather events.

“We need storage to absorb the fluctuating energy from solar and wind, and most people are interested in batteries and other kinds of electrical storage. But we were wondering whether there’s any opportunity to use geothermal energy storage, because heating and cooling is such a predominant part of the energy demand for buildings,” said first author A.T.D Perera, a former postdoctoral researcher at Lawrence Berkeley National Laboratory (Berkeley Lab) now at Princeton University’s Andlinger Center for Energy and Environment.

“We found that, with ATES, a huge amount of energy can be stored, and it can be stored for a long period of time,” Perera said. “As a result, the heating and cooling energy demand during extreme hot or cold periods can be met without adding an additional burden on the grid, making urban energy infrastructure more resilient.”

Read more at: Lawrence Berkeley National Laboratory

Aquifer thermal energy storage (ATES) uses naturally occurring underground water to store energy that can be used to heat and cool buildings. When paired with wind and solar energy, ATES becomes a zero-carbon option for temperature regulation. These illustrations show how the water is moved upward for heating in the hot months, then pumped back down and stored until winter, when the (still) warm water is brought back up to heat buildings. The same process occurs in winter, leading to stored cold water to use in summer months. (Photo Credit: Jenny Nuss/Berkeley Lab)