How Extratropical Ocean-Atmosphere Interactions Can Contribute to the Variability of Jet Streams in the Northern Hemisphere

Typography

The interaction between the oceans and the atmosphere plays a vital role in shaping the Earth’s climate. 

The interaction between the oceans and the atmosphere plays a vital role in shaping the Earth’s climate. Changing sea surface temperatures can heat or cool the atmosphere, and changes in the atmosphere can do the same to the ocean surface. This exchange in energy is known as “ocean-atmosphere coupling.”

Now, researchers from Kyushu University have revealed that this ocean-atmosphere coupling enhances teleconnection patterns—when climate conditions change across vast regions of the globe—in the Northern Hemisphere. In their recent study, the team modelled the effect of ocean coupling on atmospheric circulation patterns, finding that extratropical ocean-atmosphere coupling causes more meandering jet streams, which are linked to extreme weather events.

Ocean-atmosphere coupling is most powerful in the tropics, where the coupling is responsible for the well-known “El Niño-Southern Oscillation” in the equatorial Pacific Ocean. The El Niño-Southern Oscillation, in turn, remotely leads to a meandering jet stream in the mid-latitudes through the formation of large-scale atmospheric circulation patterns, i.e., teleconnection patterns.

Read more at Kyushu University

Photo Credit: Dimhou via Pixabay